
Beyond UPC 

 Kathy Yelick 

NERSC, Lawrence Berkeley National Laboratory 

EECS Department, UC Berkeley 



Berkeley UPC Team 

Current UPC Team 

• Filip Blagojevic 

• Dan Bonachea 

• Paul Hargrove (Runtime Lead) 

• Steve Hofmeyer 

• Costin Iancu (Compiler Lead) 

• Seung-Jai Min 

• Rajesh Nishtala 

• Kathy Yelick (Project Lead) 

• Yili Zheng 

Former UPC Team Members 

• Christian Bell 

• Wei-Yu Chen 

• Parry Husbands 

• Michael Welcome 



But Clock Frequency Scaling  

Replaced by Scaling Cores / Chip 
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15 Years of exponential growth ~2x year has ended 



This has Also Impacted 

HPC System Concurrency 

Exponential wave of increasing concurrency for forseeable future! 

1M cores sooner than you think! 
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Is Exascale a Sure Thing? 

   1 Gflop/s 

   1 Tflop/s 

 100 Mflop/s 

100 Gflop/s 

100 Tflop/s 

  10 Gflop/s 

  10 Tflop/s 

    1 Pflop/s 

100 Pflop/s 

  10 Pflop/s 

Is there a Top500 Law? 



Getting to Exascale 

A back-of-the-envelope exascale design 

• An exascale machine will be built from processors at 

roughly today’s clock rate 

– 1 GHz  109 (within a factor of 4) 

• An exascale machine therefore needs 

– 109-way concurrency 

• That concurrency likely to be divided as  

– 106 chips plus 103 way concurrency (arithmetic units) on chip 

• The 1K on-chip concurrency to be divided as  

– Independently executing cores with data parallelism 

• 16 cores each with  64-way vectors / GPU-warps 

• 128 cores each with 8-wide SIMD 

– Plus a 1-2 run the OS and other services 
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I only call them a 

“core” if they can 

execute a thread of 

instructions that 

are distinct.   

There may be another 8-16 

hardware threads per core 

if bandwidth is high 

enough that latency is still 

a problem  



Multicore vs. Manycore 

• Multicore: current trajectory 

– Stay with current fastest core design 

– Replicate every 18 months (2, 4, 8 . . . Etc…) 

– Advantage: Do not alienate serial workload 

– Examples: AMD Barcelona (4 cores),  

       Intel Nehalem (4 cores),… 

• Manycore: converging in this direction 

– Simplify cores (shorter pipelines, slower clocks, in-order processing) 

– Start at 100s of cores and replicate every 18 months 

– Advantage: easier verification, defect tolerance, highest compute/
surface-area, best power efficiency 

– Examples: Cell SPE (8 cores), Nvidia G80 (128 cores), 

     Intel Polaris (80 cores), Cisco/Tensilica Metro (188 cores) 

• Convergence: Ultimately toward Manycore 

– Manycore: if we can figure out how to program it!  

– Hedge: Heterogenous Multicore (still must run PPT) 
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Memory is Not Keeping Pace 

Technology trends against a constant or increasing memory per core 

• Memory density is doubling every three years; processor logic is every two 

• Storage costs (dollars/Mbyte) are dropping gradually compared to logic costs 

Source: David Turek, IBM 

Cost of Computation vs. Memory 
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Question: Can you double concurrency without doubling memory? 

Source: IBM 



What’s Wrong with MPI Everywhere 

• We can run 1 MPI process per core (flat model for 
parallelism) 
– This works now on dual and quad-core machines 

• What are the problems? 
– Latency: some copying required by semantics 

– Memory utilization: partitioning data for separate address 
space requires some replication 

• How big is your per core subgrid?  At 10x10x10, over 1/2 of the 
points are surface points, probably replicated 

– Memory bandwidth: extra state means extra bandwidth 

– Weak scaling: success model for the “cluster era;” will not be 
for the many core era -- not enough memory per core 

– Heterogeneity: MPI per CUDA thread-block? 

• Easiest approach 
– MPI + X, where X is OpenMP, Pthreads, OpenCL, CUDA,… 



PGAS Languages: Why use 2 

Programming Models when 1 will do? 

• Global address space: thread may directly read/write remote data  

• Partitioned: data is designated as local or global 
G
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• Remote put and get: never have to say “receive”  

• Remote function invocation?  See HPCS languages 

• No less scalable than MPI! (see previous talks) 

• Permits sharing, whereas MPI rules it out! 

• One model rather than two, but if you insist on two: 

• Can call UPC from MPI and vice verse (tested and used) 



What Heterogeneity Means to Me 

• Case for heterogeneity 

– Many small cores or wide data parallelism needed for 

energy efficiency, etc. 

– Need one fat core (at least) for running the OS 

• Local store, explicitly managed memory hierarchy 

– More efficient (get only what you need) and simpler to 

implement in hardware 

• Co-Processor interface between CPU and 

Accelerator 

– Market forces push this: GPUs have been separate chips for 

specific domains, but they may move on-chip 

– Do we really have use this co-processor idea? Isn’t parallel 

programming hard enough 



But….Optimizing for Multicore: 

Almost as Hard (if Not Harder) 
Intel Xeon (Clovertown) AMD Opteron (Barcelona) 

Sun Niagara2 (Victoria Falls) 

Simplest possible problem: 
stencil computation: nearest 
neighbor relaxation on 3D Mesh 
•For this simple code - all cache-
based platforms show poor efficiency 
and scalability  

•Could lead programmer to believe 
that approaching a resource limit 



Fully-Tuned Performance 

Intel Xeon (Clovertown) AMD Opteron (Barcelona) 

Sun Niagara2 (Victoria Falls) 

1.9x  5.4x 

12.5x 

Optimizations 

include: 
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Different optimizations have 

dramatic effects on different 

architectures 

Largest optimization benefit seen 

for the largest core count 



Stencil Results 

Single Precision Double Precision 

P
e
rf

o
rm

a
n
c
e
 

P
o
w

e
r 

E
ff
ic

ie
n
c
y
 



PGAS Languages for Manycore 

• PGAS memory are a good fit to machines with explicitly 

managed memory (local store) 

– Global address space implemented as DMA reads/writes 

– New “vertical” partition of memory needed for on/off chip, e.g., 

upc_offchip_alloc  

– Non-blocking features of UPC put/get are useful 

• SPMD execution model needs to be adapted to 

heterogeneity 
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Radical (and Unappealing) 

Proposal 

Adding teams to SPMD execution model 

• These are needed for collectives in any case 

• Uses separate teams for fat cores vs thin core teams 

Execution model 

• Execute SPMD code on either set 

• Execute any code you want on each core 

– Careful: needs to be the same (data parallel execution) to 

run well 

– Or still use a different model (annotated loops) for SIMD 

parallelism 



Features of Successful Languages 

• Portability of applications 

– Multiple compilers, portable compilers, or both (UPC vs CAF 

to date) 



UPC Compiler: Designed for Portability 

Compiler-generated code (C, asm) 

Language Runtime system 

GASNet Communication System 

Network Hardware 

Platform- 

independent 

Network- 
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independent 

Compiler- 
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UPC Code 
UPC 
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Portability of GASNET 

Original vision of conduit development progression 
• Build GASNet core (Active Messages) with provided “reference 

implementation” of full API on core 

• Incrementally develop native implementations of features (put/get, 
etc.) of full API 

Alternative GASNet progression, use on Cray XT 
• Pure MPI: mpi-conduit 

– “Runs everywhere, optimally nowhere” 

• Hybrid: replaced put/get calls with Portals RDMA 

• Pure Portals: Native Core API on Portals 

• Firehose to reduce memory registration overheads 

Easier parts of implementation first 

Better time-to-solution for acceptable performance 



Features of Successful Languages 

• Portability of applications 

– Multiple compilers, portable compilers, or both (UPC vs CAF 

to date) 

• Interoperability with other models 

– Calling MPI from UPC and vice versa 

– Necessary for incremental development 



• 16 cores on 4 sockets: how many threads & processes? 

• 8 cores with 2 hardware threads per core (hyperthreading) 

• Processes intermix with MPI; Threads with OpenMP 

• Performance tradeoffs unclear: Can we get shared memory with 
processes? 

Processes vs. Threads 

Language Threads 

Threads 

Processes 

HARDWARE 
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Features of Successful Languages 

• Portability of applications 

– Multiple compilers, portable compilers, or both 

• Interoperability with other models 

– Calling MPI from UPC and vice versa 

– Necessary for incremental development 

• Performance comparable to or better than 

alternatives, including scalability 

– This should be a selling point, not 2x slower 

• Take advantage of “best” hardware 

– Best networks, multicore, etc. 



Sharing and Communication 

Models: PGAS vs. MPI 

• A two-sided messages needs to be matched with a receive 
to identify memory address to put data 
– Offloaded to Network Interface in networks like Quadrics 

– Need to download match tables to interface (from host) 

• A one-sided put/get message can be handled directly by a 
network interface with RDMA support 
– Avoid interrupting the CPU or storing data from CPU 

(preposts) 

address 

message id 

data payload 

data payload 

one-sided put message in PGAS 

two-sided message in MPI 

network 

 interface 

memory 

host 

CPU 



GASNet vs. MPI Bandwidth on 

BG/P 

• GASNet outperforms MPI on small to medium messages, especially when 
multiple links are used. 



XT4 Performance 

• Performance on Franklin, 
quad-core XT4 @ NERSC 

– NERSC development 
machine access for 
testing 

– Testing infrequently used 
code paths in Portals 

• Native conduit outperforms 
GASNet-over-MPI by 2x 

• Latency better than raw 
MPI 

• Bandwidth equal to raw 
MPI 

• Recent Firehose support 
increased performance by 
4% to 8% in bandwidth 
(included) 
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UPC on BlueGene/P 

• Faster dense linear algebra than PBLAS/ScaLAPACK 

– Parallel matrix multiplication: 36% faster (256 cores) 

– Parallel Cholesky factorization: 9% faster (256 cores) 

• Faster FFTs than MPI 

• GASNet collectives 

    up to 4x faster than  

    previous release 

• GASNet implemented 

    on DCMF layer 
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Optimizing Collectives on 

Multicore 

28 

• Many algorithms even for 

barrier synchronization 

• Dissemination based: 

– O(T log T) “messages”  

– Time: L*(log T) (L = latency) 

• Tree-based 

– O(T) “messages” 

– Time: 2L*(log T) 



Need for Autotuned Multicore 

Collectives 
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Features of Successful Languages 

• Portability of applications 

– Multiple compilers, portable compilers, or both 

• Interoperability with other models 

– Calling MPI from UPC and vice versa 

– Necessary for incremental development 

• Performance comparable to or better than 

alternatives, including scalability 

– This should be a selling point, not 2x slower 

• Take advantage of “best” hardware 

– Best networks, multicore, etc. 

• Easy to use for a broad set of applications 

– Are there applications that do not match UPC well? 



Irregular Applications 

• UPC originally for “irregular” applications 

– Many recent performance results are on “regular” ones 

(FFTs, NPBs, etc.); those also do well 

• Does it really handle irregular ones?  Which? 

– Irregular in data accesses: 

• Irregular in space (sparse matrices, AMR, etc.): global address 

space helps; needs compiler or language for scatter/gather 

• Irregular in time (hash table lookup, etc.): for reads, UPC handles 

this well; for write you need atomic operations 

– Irregular computational patterns: 

• High level independent tasks (ocean, atm, land, etc.): need teams 

• Non bulk-synchronous: use event-driven execution 

• Not statically load balanced (even with graph partitioning, etc.): 

need global task queue  
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Two Programming Model 

Questions 

• What is the parallel control model? 

• What is the model for sharing/communication? 

    implied synchronization for message passing, not shared memory 

data parallel 

(singe thread of control) 
dynamic 

threads 

single program 

multiple data (SPMD) 

shared memory 

load 

store 

send 

receive 

message passing 



Complication of Work Sharing in 

Partitioned Memory 

• If tasks are waiting for others to 

complete, then need to suspect 

tasks for fairness: 

– This can blow up the memory space 

– CILK and X10 results on “provably 

optimal space”: execute by 

functional call / stack semantics 

until you run out of work 

• Run-to-completion: 

– Efficient and simpler to implement 

– But doesn’t always give the desired 

semantics 

• Memory partitioning with work 

sharing: can run out of memory 

locally (GPUs and UPC) 



Response of UPC to Challenges 

• Small memory per core 

– Ability to directly access another core’s memory 

• Lack of UMA memory on chip 

– Partitioned address apce 

• Massive concurrency 

– Good match for independent parallel cores 

– Not for data parallelism 

• Heterogeneity 

– Need to relax strict SPMD with at least teams 

• Application generality 

– Add atomics so remote writes work (not just reads) 
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A Brief History of Languages 

• When vector machines were king 
– Parallel “languages” were loop annotations (IVDEP)  

– Performance was fragile, but there was good user support 

• When SIMD machines were king 
– Data parallel languages popular and successful (CMF, *Lisp, C*, …) 

– Quite powerful: can handle irregular data (sparse mat-vec multiply); 

Irregular computation is less clear (search, sparse factorization) 

• When shared memory machines (SMPs) were king 
– Shared memory models, e.g., OpenMP, Posix Threads, are popular 

• When clusters took over 
– Message Passing (MPI) became dominant 

• When clusters of multicore take over… 

– Will PGAS be the dominant programming model? 

What does it take to make a programming language successful? 


